Contextual Slip and Prediction of Student Performance after Use of an Intelligent Tutor

نویسندگان

  • Ryan Shaun Joazeiro de Baker
  • Albert T. Corbett
  • Sujith M. Gowda
  • Angela Z. Wagner
  • Benjamin A. MacLaren
  • Linda R. Kauffman
  • Aaron P. Mitchell
  • Stephen Giguere
چکیده

Intelligent tutoring systems that utilize Bayesian Knowledge Tracing have achieved the ability to accurately predict student performance not only within the intelligent tutoring system, but on paper post-tests outside of the system. Recent work has suggested that contextual estimation of student guessing and slipping leads to better prediction within the tutoring software (Baker, Corbett, & Aleven, 2008a, 2008b). However, it is not yet clear whether this new variant on knowledge tracing is effective at predicting the latent student knowledge that leads to successful post-test performance. In this paper, we compare the Contextual-Guess-and-Slip variant on Bayesian Knowledge Tracing to classical four-parameter Bayesian Knowledge Tracing and the Individual Difference Weights variant of Bayesian Knowledge Tracing (Corbett & Anderson, 1995), investigating how well each model variant predicts post-test performance. We also test other ways to utilize contextual estimation of slipping within the tutor in post-test prediction, and discuss hypotheses for why slipping during tutor use is a significant predictor of post-test performance, even after Bayesian Knowledge Tracing estimates are controlled for.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Carelessness through Contextual Estimation of Slip Probabilities among Students Using an Intelligent Tutor for Mathematics

A student is said to have committed a careless error when a student’s answer is wrong despite the fact that he or she knows the answer (Clements, 1982). In this paper, educational data mining techniques are used to analyze log files produced by a cognitive tutor for Scatterplots to derive a model and detector for carelessness. Bayesian Knowledge Tracing and its variant, the Contextual-Slip-and-...

متن کامل

IRT Modeling of Tutor Performance To Predict End-of-year Exam Scores

Interest in end-of-year accountability exams has increased dramatically since the passing of the NCLB law in 2001. With this increased interest comes a desire to use student data collected throughout the year to estimate student proficiency and predict how well they will perform on end-of-year exams. In this paper we use student performance on the Assistment System, an on-line mathematics tutor...

متن کامل

Improving Contextual Models of Guessing and Slipping with a Truncated Training Set

A recent innovation in student knowledge modeling is the replacement of static estimates of the probability that a student has guessed or slipped with more contextual estimation of these probabilities [2], significantly improving prediction of future performance in one case. We extend this method by adjusting the training set used to develop the contextual models of guessing and slipping, remov...

متن کامل

Improving Contextual Models of Guessing and Slipping with a Trucated Training Set

A recent innovation in student knowledge modeling is the replacement of static estimates of the probability that a student has guessed or slipped with more contextual estimation of these probabilities [2], significantly improving prediction of future performance in one case. We extend this method by adjusting the training set used to develop the contextual models of guessing and slipping, remov...

متن کامل

An Interactive Computer-Based Tutor for LISP

‘This paper describes an intelligent computer-based tutor for LISP tha? incorporates some of the Ingredients of good private tutoring. The tutor consists of a problem-solver that generates steps toward a solution and an advisor that compares the problem-solver’s steps to the student’s steps. Our system can interact with students in a number of different problem spaces for algorithm design and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010